Day-length encoding through tonic photic effects in the retinorecipient SCN region.

نویسندگان

  • Lily Yan
  • Rae Silver
چکیده

The circadian clock in the suprachiasmatic nucleus (SCN) plays a critical role in seasonal processes by sensing ambient photoperiod. To explore how it measures day-length, we assessed the state of SCN oscillators using markers for neuronal activity (c-FOS) and the clock protein (PER1) in Syrian hamsters housed in long (LD, 16 : 8 h light : dark) vs. short days (SD, 8 : 16 h light : dark). During SD, there was no detectable phase dispersion across the rostrocaudal extent of the nucleus. In contrast, during LD, rhythms in the caudal SCN phase led those in the mid- and rostral SCN by 4-8 h and 8-12 h, respectively. Importantly, some neurons in the retinorecipient core SCN were unique in that they were FOS-positive during the dark phase in LD, but not SD. Transfer of LD animals to constant darkness or skeleton photoperiod revealed that dark-phase FOS expression depends on tonic light exposure rather than on intrinsic clock properties. By transferring animals from SD to LD, we next discovered that there are two separate populations of SCN cells, one responding to acute and the other to tonic light exposure. The results suggest that the seasonal encoding of day-length by the SCN entails reorganization of its constituent oscillators by a subgroup of neurons in the SCN core that respond to tonic photic cues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compartmentalized expression of light-induced clock genes in the suprachiasmatic nucleus of the diurnal grass rat (Arvicanthis niloticus).

Photic responses of the circadian system are mediated through light-induced clock gene expression in the suprachiasmatic nucleus (SCN). In nocturnal rodents, depending on the timing of light exposure, Per1 and Per2 gene expression shows distinct compartmentalized patterns that correspond to the behavioral responses. Whether the gene- and region-specific induction patterns are unique to nocturna...

متن کامل

Signaling within the master clock of the brain: localized activation of mitogen-activated protein kinase by gastrin-releasing peptide.

The circadian clock located in the mammalian suprachiasmatic nucleus (SCN) exhibits substantial heterogeneity in both its neurochemical and functional organization, with retinal input and oscillatory timekeeping functions segregated to different regions within the nucleus. Although it is clear that photic information must be relayed from directly retinorecipient cells to the population of oscil...

متن کامل

Calbindin influences response to photic input in suprachiasmatic nucleus.

It is well known that light resets the circadian clock only at specific times of day. The mechanisms mediating such gating of environmental input to the CNS are not well understood. We show that calbindinD28K (CalB)-containing cells of the suprachiasmatic nucleus (SCN), which are directly retinorecipient, gate photic entrainment of cellular circadian oscillators and thereby determine the timing...

متن کامل

Gastrin-releasing peptide mediates photic entrainable signals to dorsal subsets of suprachiasmatic nucleus via induction of Period gene in mice.

The suprachiasmatic nucleus (SCN), locus of the central circadian clock, consists of two neuronal populations (i.e., a light-recipient ventral SCN subpopulation directly entrained by light and a dorsal SCN subpopulation with an autonomous oscillatory function possessing an indirect or weak light response). However, the mechanism underlying the transmission of photic signals from the ventral to ...

متن کامل

Processing of daily and seasonal light information in the mammalian circadian clock.

It is necessary for an organism's survival that many physiological functions and behaviours demonstrate daily and seasonal variations. A crucial component for the temporal control in mammals is the circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Neurons in the SCN generate a rhythm in electrical activity with a period of about 24h. The SCN receives photic infor...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European journal of neuroscience

دوره 28 10  شماره 

صفحات  -

تاریخ انتشار 2008